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Historical refugee relocation process
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Data-driven refugee relocation process
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Data-driven refugee relocation process
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Data-driven refugee relocation process
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Data-driven refugee relocation process
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Data-driven refugee relocation process
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Data-driven refugee relocation process

This we will refer as the algorithmic policy
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Predicted vs expected utility

• a matching that maximizes the (conditional) predicted utility

• a matching that maximizes the (conditional) expected utility

If the classifier is perfectly calibrated a matching that maximizes the predicted 
utility will also maximize the expected utility
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This is not possible to achieve



What do we mean by calibration?

With increase in the (total) predicted utility, the number of refugees 
finding jobs should not decrease 11
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Counterfactual harm

A refugee that would have succeded in finding a job if the default policy had been 
implemented failed because of the algorithmic policy
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Partial inverse bipartite matching problem
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modify the edge weights such that the 
positive decisions in the default policy 
become part of every matching that 

maximizes the predicted utility



Partial inverse bipartite matching problem
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Post-processing framework
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Experiments on synthetic data

• Synthetic data

•  statistics from UNHCR, Migration policy institute, US department of labor, US census 

•  generate data that matches the distribution of these statistics

•  possible to compute the true expected utility achieved by any algorithmic matching

• Experimental setting

• 5000 synthetic pools of refugees to be settled across 10 locations

• each pool has 100 refugees and features are age, sex, country of origin, education

• each location corresponds to a US state and  features are labour market, demography of labor force

The classifier g overestimates the true employment probability for half of the locations, 
picked at random, and underestimates its value for the remaining half
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Experiments on synthetic data

Low noise level (0.25) Medium noise level (0.5) High noise level (0.875)

Maximize the conditional predicted utility under 
the following policies

•               : employment probabilities of classifier

•               : modified employment probabilities

•               : predicted employment probabilities of 
    the transformer model

As the level of noise increases in the default policy, 
it is difficult for our framework to learn to avoid
harm from past placement decisions made by the 
default policy
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Paper

Code
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• We show that data-driven algorithmic matching may 
cause (counterfactual) harm to some refugees

• We initiate the discussion on designing of systems that 
cause less (counterfactual) harm in practice

• Our framework may also have limitations and these 
limitations must be addressed before deploying

Summary



Paper

Code

Anyone could find themselves in the position of being a 
refugee some day. If that happens, would you be satisfied 
with the same system that has been used for others?
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