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Historical refugee relocation process
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This we will refer as the default policy
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Data-driven refugee relocation process

We are using tools from machine learning, integer
optimization, and matching theory to find the best
matches between refugees and local communities.

we matCh refugees and An official report by the Swedish Government and

the Ipdependent Chief Inspector of Border; and |
welcoming cities directly {ne geographic matching of rfugene
and precisely. Introducing Annie” MOORE
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Annie™ MOORE (Matching and Outcome Optimization

Re:Match takes into account the individual for Refugee Empowerment) is the world's first
fil d f f th ki software that helps resettlement agencies optimize

proti es' and preferences o os.e SE? 'Il‘lg their initial placement of refugees within host

protection and matches them with cities’ countries. It is named in honor of Annie Moore, the

capacities and infrastructure conditions. first person to be processed at Ellis Island in 1892.

Read about how Annie™ has been helping a
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ity? ity?




Data-driven refugee relocation proce
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Data-driven refugee relocation process
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Data-driven refugee relocation process

Maximum weight bipartite matching Utility of t(g) =0.8 + 0.6 + 0.5
problem

Find a matching m(g) that maximizes the predicted utility



Data-driven refugee relocation process

Classifier probability g
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Data-driven refugee relocation process
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This we will refer as the algorithmic policy



Predicted vs expected utility

* a matching that maximizes the (conditional) predicted utility
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* a matching that maximizes the (conditional) expected utility
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If the classifier is perfectly calibrated a matching that maximizes the predicted
utility will also maximize the expected utility

This is not possible to achieve



What do we mean by calibration?

Assignment 1
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With increase in the (total) predicted utility, the number of refugees
finding jobs should not decrease H



Counterfactual harm

A refugee that would have succeded in finding a job if the default policy had been
implemented failed because of the algorithmic policy 5



Partial inverse bipartite matching problem
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Partial inverse bipartite matching problem

Default policy
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Experiments on synthetic data

* Synthetic data

* statistics from UNHCR, Migration policy institute, US department of labor, US census

e generate data that matches the distribution of these statistics

e possible to compute the true expected utility achieved by any algorithmic matching

* Experimental setting

* 5000 synthetic pools of refugees to be settled across 10 locations
* each pool has 100 refugees and features are age, sex, country of origin, education
* each location corresponds to a US state and features are labour market, demography of labor force

The classifier g overestimates the true employment probability for half of the locations,
picked at random, and underestimates its value for the remaining half
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As the level of noise increases in the default policy,
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harm from past placement decisions made by the
default policy
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summary

* We show that data-driven algorithmic matching may
cause (counterfactual) harm to some refugees

 We initiate the discussion on designing of systems that
cause less (counterfactual) harm in practice

 Our framework may also have limitations and these
limitations must be addressed before deploying



Anyone could find themselves in the position of being a
refugee some day. If that happens, would you be satisfied
with the same system that has been used for others?
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