CLUSTERING WITH FAIR CENTER REPRESENTATION PARAMETERIZED APPROXIMATION ALGORITHMS AND HEURISTICS

 SUHAS THEJASWI 1 · AMEET GADEKAR 1 BRUNO ORDOZGOITI 2 · MICHAŁ OSADNIK¹

¹Aalto University · ²Queen Mary University of London

DIV-k-MED instance $((U, d), F, C, \mathcal{G}, \vec{r}, k)$. **Input:**

- \blacksquare metric space (U, d)
- set $C \subseteq U$ of clients
- set $F \subseteq U$ of facilities
- a collection of facilities called **groups**, $\mathscr{G}=\{G_1,\ldots,G_t\}$
- vector of requirements $\vec{r} = (r[1], \ldots, r[t])$ $k \leq |F|$
- **Output:** subset of facilities $S \subseteq F$, satisfying:
- $|S \cap G_i| \geq r[i]$ $|\mathbf{S}| \leq k$
- clustering cost $\sum_{c\in C} d(c, S)$ is minimized.

PROBLEM FORMULATION

Theorem 1 For every $\epsilon > 0$, there exists *a randomized* $(1 + \frac{2}{e})$ e + ϵ)*-approximation algorithm for* DIV-k-MED *with running time* $f(k, t, \epsilon)$ · $poly(|U|)$, where $f(k, t, \epsilon)$ = $\mathscr O$ $\left(\frac{2^t k^3 \log^2 k}{\epsilon} \right)$ $\overline{\epsilon^2 \log(1+\epsilon)}$ $\left\langle k\right\rangle$ *. Furthermore, the approximation ratio is tight for any FPT algorithm w.r.t* (k, t)*, assuming Gap-ETH. For* DIV-k-MEANS*, with the same running time, we* $obtain$ a $(1+\frac{8}{e})$ e $(+\epsilon)$ -approximation, which is tight *assuming Gap-ETH.*

$(3 + \epsilon, 2k)$ LS + LP (2^{tk}) $(3 + \epsilon, 2k)$ LS + DP $(kt2^t(r+1)^t)$ $(1 + \frac{2}{e})$ $\frac{2}{e} + \epsilon, k$) FPT (k, t, ϵ) \mathscr{O}^* $\int \left(\frac{2^t k^3 \log^2 k}{k} \right)$ $\overline{\epsilon^2 \log(1+\epsilon)}$ $\left\langle k\right\rangle$

DIVERSITY AWARE CLUSTERING FPT ALGORITHM

MAIN RESULT

- The problem of finding representatives among a set of individuals can be considered as a clustering problem.
- In certain scenarios, it may be adequate to consider additional requirements to ensure that some groups are adequately represented using cardinality requirements.
- We introduced this problem as the *diversity-aware* k*-median* problem in our earlier work [2].
- 1. Find feasible constraint patterns (bruteforce enumeration).
- 2. Create an instance of a k-MED-k-PM problem for each set of facility types satisfying constraints.
- 3. Reduce the number of clients via coresets [1].
- 4. Guess *leaders* from a set of clients in coreset and guess distances of the closest facility in the optimal solution.

With same running time bounds we obtain a $(1 + \frac{8}{e})$ $\frac{8}{e}$ + ϵ)-approximation for the DIV-k-MEANS problem.

 $((U, d), F, C, \mathcal{G}, \vec{r}, k)$ of the DIV-k-MED prob*lem, we can enumerate all the* k*-multisets with feasible constraint pattern in time* $\mathscr{O}(2^{tk}t|U|)$ *.*

5. Making use of recent developments in submodular maximization subject to matroid constraint we obtain a $(1 + \frac{2}{\epsilon})$ ϵ $+$ ϵ) approximation.

Output: subset $S \subseteq F$ of facilities containing at most one facility from each group G_i and minimize clustering cost.

Figure 1: An illustration of facility selection for the FPT algorithm for solving k-MED-k-PM **instance.**

Note that the running times do not include the time needed for the submodular maximization due to the variety of techniques applicable.

BICRITERIA

The FPT approximation algorithms are theoretically the best possible, however, they are not practical. For bicriteria approximation, we first use an approximation algorithm for k -MEDIAN/ k -MEANS. Then, if required we add facilities to satisfy the feasibility constraints (requirements vector) by solving the feasibility problem.

Strategies

- *Exhaustive Search* is the same strategy as in the previous algorithm that is terminating upon finding any feasible solution.
- *Dynamic Program* has lower theoretical running time and memory complexity but does not perform well when instances have multiple feasible solutions.
- *Linear Program* has good practical performance, however, this is a heuristic and it will not ensure finding a feasible solution always.

ADDITIONAL RESULTS

Theorem 2 For every $\epsilon > 0$, there exists a ran*domized* $(3 + \epsilon)$ -approximation algorithm that *outputs at most* 2k *facilities for the* DIV-k-MED problem in time $\mathscr{O}(2^t(r+1)^t \cdot \textsf{poly}(|U|,1/\epsilon)).$

(k**-MED-**k**-PM) instance:**

 \blacksquare metric space (U, d) ■ set $C \subseteq U$ of clients ■ set $F \subseteq U$ of facilities a partition of $groups, \mathscr{G} = \{G_1, \ldots, G_k\}$

EXPERIMENTS

Figure 2: Scalability of bicriteria algorithms for $DIV-k-MED$ **.**

Figure 3: Scalability of $ES + LS_1$ **algorithm for** $DIV-k-MED$ **.**

REFERENCES

[1] D. Feldman and M. Langberg. A unified framework for approximating and clustering data. In *STOC*, page 569–578. ACM, 2011. [2] S. Thejaswi, B. Ordozgoiti, and A. Gionis. Diversity-aware k-median: Clustering with fair center representation. In *ECML-PKDD*, pages 1–16. Springer, 2021.