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DIVERSITY AWARE CLUSTERING
The problem of finding representatives
among a set of individuals can be consid-
ered as a clustering problem.
In certain scenarios, it may be adequate
to consider additional requirements to en-
sure that some groups are adequately rep-
resented using cardinality requirements.
We introduced this problem as the
diversity-aware k-median problem in our
earlier work [2].

PROBLEM FORMULATION
DIV-k-MED instance ((U, d), F, C,G , r⃗, k).
Input:

metric space (U, d)
set C ⊆ U of clients
set F ⊆ U of facilities
a collection of facilities called groups,
G = {G1, . . . , Gt}
vector of requirements r⃗ = (r[1], . . . , r[t])
k ≤ |F |

Output: subset of facilities S ⊆ F , satisfying:

|S ∩Gi| ≥ r[i]
|S| ≤ k
clustering cost

∑
c∈C d(c, S) is minimized.

MAIN RESULT

Theorem 1 For every ϵ > 0, there exists
a randomized (1 + 2

e + ϵ)-approximation al-
gorithm for DIV-k-MED with running time
f(k, t, ϵ) · poly(|U |), where f(k, t, ϵ) =

O

((
2tk3 log2 k
ϵ2 log(1+ϵ)

)k
)

. Furthermore, the ap-

proximation ratio is tight for any FPT algo-
rithm w.r.t (k, t), assuming Gap-ETH. For
DIV-k-MEANS, with the same running time, we
obtain a (1+ 8

e+ϵ)-approximation, which is tight
assuming Gap-ETH.

FPT ALGORITHM
1. Find feasible constraint patterns (brute-

force enumeration).
2. Create an instance of a k-MED-k-PM

problem for each set of facility types sat-
isfying constraints.

3. Reduce the number of clients via coresets
[1].

4. Guess leaders from a set of clients in core-
set and guess distances of the closest facil-
ity in the optimal solution.

5. Making use of recent developments in
submodular maximization subject to ma-
troid constraint we obtain a (1 + 2

ϵ + ϵ)
approximation.

Figure 1: An illustration of facility selec-
tion for the FPT algorithm for solving
k-MED-k-PM instance.

Algorithmic results for DIV-k-MED

Approx. Approx. Runtime
factor method

(3 + ϵ, 2k) LS + LP O∗ (2tk)
(3 + ϵ, 2k) LS + DP O∗ (kt2t(r + 1)t)

(1 + 2
e + ϵ, k) FPT(k, t, ϵ) O∗

((
2tk3 log2 k
ϵ2 log(1+ϵ)

)k
)

Note that the running times do not include
the time needed for the submodular max-
imization due to the variety of techniques
applicable.

With same running time bounds we ob-
tain a (1 + 8

e + ϵ)-approximation for the
DIV-k-MEANS problem.

BICRITERIA
The FPT approximation algorithms are theo-
retically the best possible, however, they are
not practical. For bicriteria approximation,
we first use an approximation algorithm for
k-MEDIAN/k-MEANS. Then, if required we
add facilities to satisfy the feasibility con-
straints (requirements vector) by solving the
feasibility problem.

Strategies

Exhaustive Search is the same strategy as in
the previous algorithm that is terminating
upon finding any feasible solution.
Dynamic Program has lower theoretical
running time and memory complexity
but does not perform well when instances
have multiple feasible solutions.
Linear Program has good practical perfor-
mance, however, this is a heuristic and it
will not ensure finding a feasible solution
always.

ADDITIONAL RESULTS

Theorem 2 For every ϵ > 0, there exists a ran-
domized (3 + ϵ)-approximation algorithm that
outputs at most 2k facilities for the DIV-k-MED
problem in time O(2t(r + 1)t · poly(|U |, 1/ϵ)).

Lemma 1 Given an instance I =
((U, d), F, C,G , r⃗, k) of the DIV-k-MED prob-
lem, we can enumerate all the k-multisets with
feasible constraint pattern in time O(2tkt|U |).
(k-MED-k-PM) instance:

metric space (U, d)
set C ⊆ U of clients
set F ⊆ U of facilities
a partition of groups, G = {G1, . . . , Gk}

Output: subset S ⊆ F of facilities containing
at most one facility from each group Gi and
minimize clustering cost.
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Figure 2: Scalability of bicriteria algorithms for DIV-k-MED. Figure 3: Scalability of ES + LS1 algorithm for DIV-k-MED.
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