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A real-world problem

Image source: https://griffsgraphs.wordpress.com/2012/07/02/a-facebook-network/

Facebook network

Each color
represents a group.

A minimum-weight
subgraph connecting
at least one vertex
from each color.
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The Steiner problem

Rectangles are terminal vertices and circles are non-terminal vertices.

A minimum subgraph connecting all the terminals.



The group Steiner problem

NNNNN

A minimum subgraph connecting at least one vertex
from each group.



Parameterised algorithms for the Steiner problem

NP-completeness

m [he Steiner problem
m Karp, 1972

m The group Steiner problem
m |hler, Discrete Applied Mathematics 1999

Parameterised algorithms

m Dreyfus and Wagner, 1972
m Erickson, Monma and Veinott, 1987



Dreyfus—Wagner algorithm

Networks, 1972

Dynamic-programing algorithm

Fixed parameter tractable
Optimal-decomposition property

Exponential space complexity

Time complexity, O3 n + 2 n’ + n (n log n + m))

m Graph N=(V, E, w) Cost of a Steiner tree
m TerminalsetK & V connecting XU {v}
m Subset X C K m g (X),ifdeg(v) =2
m VertexvelV m f(X), otherwise



Optimal-decomposition property

[—O
go(X) = min {f,(X") + fo(X\X')} fo(X) = min{ min{d(v, u) + fu(X \ {u})},

min {d(v,u) + g.(X)}}.

ueV\X



Erickson—Monma—Veinott Algorithm

Mathematics of Operations Research, 1987
Improvement of Dreyfus—\Wagner algorithm

Three improvements

m Splitset Xonlywhenve VX

m Restrict computations to subset with terminals
m Compute shortest path on demand

Edge-linear time algorithm
Time complexity, O(3* n + 2% (n log n + m))
Exponential space complexity, O(2* n + n + m)

9,(X) = min {£,(X') + [,(X\X'))

D£X'C

£,(X) = min {d(v,u) + g,(X)}



Solving the group Steiner problem
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Reducing the group Steiner problem
to the Steiner problem.

A network N = (V, E, w)
C = W(N)

Vol3, Balkan conference on
Operational Research, 1990.
Restated by Duin et al. in 2004.

Most algorithms of the Steiner
problem can be used to solve
the group Steiner problem.
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Implementation challenges

Obijective: Scaling for graphs with large number of edges

Memory consumption oo

m Space complexity O(2*n + n + m) m n=number of vertices

|

|

|
m Natural-bit representation for subsets | - m = number of edges

1 m &k =number of terminals
|

Graph traversal and memory interface
m Arbitrary memory access pattern
m Less cache locality for large graphs
m Array of arrays representation for graphs

Parallel execution
m Single core cannot saturate the memory bandwidth
m Parallelisation over subsets of the terminal set K
m 2 executions of Dijkstra subroutine
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gu(X) =

(Z);gl(i’IClX{fv (XI) + Jo (X\X,)}

index_t X = X_alil;

index_t *f_X = f_v + FV_INDEX(0, n, k, X);

index_t Xd = 0;

// bit twiddling hacks: generating proper subsets of

Implementation of Erickson—Monma-Veinott Algorithm

X

min {d(v, u) + gu(X)}}.

ueV\X

2% executions of Dijkstra
subroutine

Parallelisation over subsets
Bit-twiddling hacks for subset
generation

Same memory used for g (X)

and f (X)

One-dimensional array of size 2n

for{¥d = X & (Xd -~ X); ¥d I= X; Xd =X & (Xd - X)) {
index_t X_Xd X & "Xd); // X -X°
index_t *f_Xd f_v + FV_INDEX(0, n, k, Xd);
index_t *f_X_Xd f_v + FV_INDEX(O, n, k, X_Xd);
for(index_t v = 0; v < n; v++)
f_X[v] = MIN(f_X[v], f_Xd[v] + f_X_Xd[v])

.

// graph reconstruction

index_t s = n + th; index_t ps = pos[s];
index_t *adj_s = adj + (ps+1);
for(index_t u = 0; u < n; u++)
adj_s[2*u+1] = f_X[ul;°
for(index_t q = 0; q < k; g++) {
if (1 (X & (1<<q))) continue;
index_t u = kk[ql; index_t X_u = (X & ~(1<<q));
index_t i_X_u = FV_INDEX(u, n, k, X_u);
adj_s[2*u+1] = f_v[i_X_ul;
}
dijkstra(s, n+nt, pos, adj, d_th, visit_th);
for(index_t v = 0; v < n; v++)
f_X[v]l = d_th([v];
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Experiments

We measure the runtime, memory bandwidth and
peak-memory usage of the experiments.

Dijkstra’s algorithm

Erickson, Monma and Veinott algorithm

[ o e -
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e Regular graphs I

e 1 =number of vertices

|

) _ . e m =number of edges 1
Binary versus Fibonacci heaps e /= number of terminals !
|
[ ] 1

d = degree

|
Edge-linear scaling E
|

Edge-linear scaling (fixed k)
Parallelisation speedup

m Scaling up to a billion edges

Exponential scaling of number of terminals (fixed m)
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Hardware

Mid-memory configuration
m 2Xx2.5GHz Intel Xeon E5-2680v3 CPU (Haswell microarchitecture,
24 cores, 12 cores/CPU, no hyper-threading, 30 MiB L3 cache)
m 128 GiB of main memory (8 x 16 GiB DDR4-2133, ECC enabled)

Large-memory configuration
m 2 Xx 2.5 GHz Intel Xeon E5-2680v3 CPU (Haswell microarchitecture,
24 cores, 12 cores/CPU, no hyper-threading, 30 MiB L3 cache)
m 256 GiB of main memory (16 x 16 GiB DDR4-2133, ECC enabled)

Huge-memory configuration
m 4 x 2.8 GHz Intel Xeon E7-8891v3 CPU (Haswell microarchitecture,
40 cores, 10 cores/CPU, no hyper-threading, 45 MiB L3 cache)
m 1536 GiB of main memory (96 x 16 GiB DDR4-2133, ECC enabled)
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Edge scaling of Dijkstra’s algorithm
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Binary heaps versus Fibonacci heaps
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Runtime [s]
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Runtime [s]
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Parallelisation speed-up
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Memory bandwidth [GiB/s]
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Runtime [s]

Scaling up to a billion edges
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Runtime [s]
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Optimal cost versus optimal solution
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Summary

Scaling on a single compute node

m Up to a billion edges for small number of terminals
m Up to twenty terminals for small number of edges

Parallel implementation
m Fifteen times faster than its serial counterpart for large graphs
m  Memory bandwidth is twice the read random cache lines experiment

Heap implementations
m Binary heap perform better than Fibonacci heap
m Fibonacci heap can compete for dense graphs

Future work

m Performance is limited by memory bandwidth
m Using GPUs to achieve better memory bandwidth
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Questions ?



Thank you )



