Scalable Parameterised
Algorithms for two Steiner
Problems

Suhas Thejaswi Muniyappa

suhas.muniyappa (at) aalto.fi

Supervisor: Professor Petteri Kaski

Aalto
Scho

©
o 3
-~ <
08
° @

<

A real-world problem

Image source: https://griffsgraphs.wordpress.com/2012/07/02/a-facebook-network/

Facebook network

Each color
represents a group.

A minimum-weight
subgraph connecting
at least one vertex
from each color.

Outline

Introduction
m The Steiner problem
m The group Steiner problem

Algorithms
m Dreyfus—Wagner algorithm
m Erickson—Monma-Veinott algorithm
m Reduction for solving the group Steiner problem

Implementation
m Challenges
m Implementation of Erickson—-Monma-Veinott algorithm

Experimental results
m Scaling
m Parallelisation speed-up

The Steiner problem

Rectangles are terminal vertices and circles are non-terminal vertices.

A minimum subgraph connecting all the terminals.

The group Steiner problem

NNNNN

A minimum subgraph connecting at least one vertex
from each group.

Parameterised algorithms for the Steiner problem

NP-completeness

m [he Steiner problem
m Karp, 1972

m The group Steiner problem
m |hler, Discrete Applied Mathematics 1999

Parameterised algorithms

m Dreyfus and Wagner, 1972
m Erickson, Monma and Veinott, 1987

Dreyfus—Wagner algorithm

Networks, 1972

Dynamic-programing algorithm

Fixed parameter tractable
Optimal-decomposition property

Exponential space complexity

Time complexity, O3 n + 2 n’ + n (n log n + m))

m Graph N=(V, E, w) Cost of a Steiner tree
m TerminalsetK & V connecting XU {v}
m Subset X C K m g (X),ifdeg(v) =2
m VertexvelV m f(X), otherwise

Optimal-decomposition property

[—O
go(X) = min {f,(X") + fo(X\X')} fo(X) = min{ min{d(v, u) + fu(X \ {u})},

min {d(v,u) + g.(X)}}.

ueV\X

Erickson—Monma—Veinott Algorithm

Mathematics of Operations Research, 1987
Improvement of Dreyfus—\Wagner algorithm

Three improvements

m Splitset Xonlywhenve VX

m Restrict computations to subset with terminals
m Compute shortest path on demand

Edge-linear time algorithm
Time complexity, O(3* n + 2% (n log n + m))
Exponential space complexity, O(2* n + n + m)

9,(X) = min {£,(X') + [,(X\X'))

D£X'C

£,(X) = min {d(v,u) + g,(X)}

Solving the group Steiner problem

:I'\
I\

/2N
LA |

Reducing the group Steiner problem
to the Steiner problem.

A network N = (V, E, w)
C = W(N)

Vol3, Balkan conference on
Operational Research, 1990.
Restated by Duin et al. in 2004.

Most algorithms of the Steiner
problem can be used to solve
the group Steiner problem.

10

Implementation challenges

Obijective: Scaling for graphs with large number of edges

Memory consumption oo

m Space complexity O(2*n + n + m) m n=number of vertices

|

|

|
m Natural-bit representation for subsets | - m = number of edges

1 m &k =number of terminals
|

Graph traversal and memory interface
m Arbitrary memory access pattern
m Less cache locality for large graphs
m Array of arrays representation for graphs

Parallel execution
m Single core cannot saturate the memory bandwidth
m Parallelisation over subsets of the terminal set K
m 2 executions of Dijkstra subroutine

11

gu(X) =

(Z);gl(i’IClX{fv (XI) + Jo (X\X,)}

index_t X = X_alil;

index_t *f_X = f_v + FV_INDEX(0, n, k, X);

index_t Xd = 0;

// bit twiddling hacks: generating proper subsets of

Implementation of Erickson—Monma-Veinott Algorithm

X

min {d(v, u) + gu(X)}}.

ueV\X

2% executions of Dijkstra
subroutine

Parallelisation over subsets
Bit-twiddling hacks for subset
generation

Same memory used for g (X)

and f (X)

One-dimensional array of size 2n

for{¥d = X & (Xd -~ X); ¥d I= X; Xd =X & (Xd - X)) {
index_t X_Xd X & "Xd); // X -X°
index_t *f_Xd f_v + FV_INDEX(0, n, k, Xd);
index_t *f_X_Xd f_v + FV_INDEX(O, n, k, X_Xd);
for(index_t v = 0; v < n; v++)
f_X[v] = MIN(f_X[v], f_Xd[v] + f_X_Xd[v])

.

// graph reconstruction

index_t s = n + th; index_t ps = pos[s];
index_t *adj_s = adj + (ps+1);
for(index_t u = 0; u < n; u++)
adj_s[2*u+1] = f_X[ul;°
for(index_t q = 0; q < k; g++) {
if (1 (X & (1<<q))) continue;
index_t u = kk[ql; index_t X_u = (X & ~(1<<q));
index_t i_X_u = FV_INDEX(u, n, k, X_u);
adj_s[2*u+1] = f_v[i_X_ul;
}
dijkstra(s, n+nt, pos, adj, d_th, visit_th);
for(index_t v = 0; v < n; v++)
f_X[v]l = d_th([v];

12

Experiments

We measure the runtime, memory bandwidth and
peak-memory usage of the experiments.

Dijkstra’s algorithm

Erickson, Monma and Veinott algorithm

[o e -

|

e Regular graphs I

e 1 =number of vertices

|

) _ . e m =number of edges 1
Binary versus Fibonacci heaps e /= number of terminals !
|
[] 1

d = degree

|
Edge-linear scaling E
|

Edge-linear scaling (fixed k)
Parallelisation speedup

m Scaling up to a billion edges

Exponential scaling of number of terminals (fixed m)

13

Hardware

Mid-memory configuration
m 2Xx2.5GHz Intel Xeon E5-2680v3 CPU (Haswell microarchitecture,
24 cores, 12 cores/CPU, no hyper-threading, 30 MiB L3 cache)
m 128 GiB of main memory (8 x 16 GiB DDR4-2133, ECC enabled)

Large-memory configuration
m 2 Xx 2.5 GHz Intel Xeon E5-2680v3 CPU (Haswell microarchitecture,
24 cores, 12 cores/CPU, no hyper-threading, 30 MiB L3 cache)
m 256 GiB of main memory (16 x 16 GiB DDR4-2133, ECC enabled)

Huge-memory configuration
m 4 x 2.8 GHz Intel Xeon E7-8891v3 CPU (Haswell microarchitecture,
40 cores, 10 cores/CPU, no hyper-threading, 45 MiB L3 cache)
m 1536 GiB of main memory (96 x 16 GiB DDR4-2133, ECC enabled)

14

Edge scaling of Dijkstra’s algorithm

10% ——————— g R
Binary heap O { . K
Fibonacci heap X x 1 1 m Five random i
1 | gl (d-regular) graphs for i
10 | X 1 each value of m !
- X o . m d=20 (fixed) i
g . v o . m Logarithmic axis |
£ 1007 y . | . m Mid-memory |
| . .

z 5 i configuration !
3 : - e e e e e e e e e e M Mo 1

wlbe]

-2
10 — —
10° 10 10°

Number of edges (m)

15

Binary heaps versus Fibonacci heaps

102 [LELELELELE | - T T LI | T T — T T T T L Y
Binary heap o 1 . IUUPISE
Fibonacci heap X = g 1 %
! 8 5
10
H
& i
2 e g
3 10° | 5 @
Z o}
« B
B X 0O
10 % X 5
o O REN i
10° 10°
-2
10 '
10° 10° 107 10° 10° 10"
Number of edges (m)
m Five random (d-regular) m n=65536 (fixed)

graphs for each value of m

m Mid-memory configuration s Logarithmic axis

m J4=20,40, 80, ..., 40960

Runtime [s]

10’

Edge scaling

Binary heap

©

10°

10’
Number of edges (m)

10°

m Five random
(d-regular) graphs for
each value of m

m d= 20 (fixed)
m k=10 (fixed)
m Logarithmic axis

m Mid-memory
configuration

17

Runtime [s]

10° |

10

10

10

10!

Parallelisation speed-up

ISeriall IOIII”I
Parallel X 8]
O]
o
O
X
O X
X
X
10° 107 10

Number of edges (m)

m Five random
(d-regular) graphs for
each value of m

" m d =20 (fixed)
' m k=10 (fixed)
E m Logarithmic axis E
i m Speed-up is fifteen i
' times for m = 10° !

m Mid-memory
configuration

18

Memory bandwidth [GiB/s]

50 |

30

20

40 t

10

Memory bandwidth

.Seriall O -]
Parallel X
_ Ry o
° °© © o e o
10° 10 10®
Number of edges (m)

m Five random
(d-regular) graphs for
each value of m

s d =20 (fixed)
m k=10 (fixed)

Logarithmic x-axis E
m Bandwidth speed-up i

is fifteen times for
m = 108

m Mid-memory
configuration

19

Runtime [s]

Scaling up to a billion edges

Binary klleap O | o
- ©)]
| O
| e
| O]
o
10° 10 10° 10°
Number of edges (m)

———————————————————————

m Five random
(d-regular) graphs for
each value of m

m d=20 (fixed)

, m k=10 (fixed)
. m Logarithmic axis

m Huge-memory
configuration

20

Runtime [s]

10

10

10

10

Optimal cost versus optimal solution

el 2 Fernion]
Optimal solution X I
| (d-regular) graphs for
1o each value of m
8 | ' w d =20 (fixed)
% | m k=10 (fixed)
& | L :
’ ' m Logarithmic axis
3 . i m Binary heap
X E m Large-memory
- configuration
10° 107 % TTTTTTTTTTTTT T

Number of edges (m)

21

Summary

Scaling on a single compute node

m Up to a billion edges for small number of terminals
m Up to twenty terminals for small number of edges

Parallel implementation
m Fifteen times faster than its serial counterpart for large graphs
m Memory bandwidth is twice the read random cache lines experiment

Heap implementations
m Binary heap perform better than Fibonacci heap
m Fibonacci heap can compete for dense graphs

Future work

m Performance is limited by memory bandwidth
m Using GPUs to achieve better memory bandwidth

22

Questions ?

Thank you)

