
Scalable Parameterised
Algorithms for two Steiner

Problems

Suhas Thejaswi Muniyappa
suhas.muniyappa (at) aalto.fi

Supervisor: Professor Petteri Kaski

1

A real-world problem

22

■ Facebook network

■ Each color
represents a group.

■ A minimum-weight
subgraph connecting
at least one vertex
from each color.

Image source: https://griffsgraphs.wordpress.com/2012/07/02/a-facebook-network/

Outline

3

Introduction
■ The Steiner problem
■ The group Steiner problem

Algorithms
■ Dreyfus–Wagner algorithm
■ Erickson–Monma–Veinott algorithm
■ Reduction for solving the group Steiner problem

Implementation
■ Challenges
■ Implementation of Erickson–Monma–Veinott algorithm

Experimental results
■ Scaling
■ Parallelisation speed-up

The Steiner problem

4

A minimum subgraph connecting all the terminals.

Rectangles are terminal vertices and circles are non-terminal vertices.

The group Steiner problem

A minimum subgraph connecting at least one vertex
from each group.

5

Parameterised algorithms for the Steiner problem

6

NP-completeness
■ The Steiner problem

■ Karp, 1972
■ The group Steiner problem

■ Ihler, Discrete Applied Mathematics 1999

Parameterised algorithms
■ Dreyfus and Wagner, 1972
■ Erickson, Monma and Veinott, 1987

Dreyfus–Wagner algorithm

7

■ Graph N = (V, E, w)
■ Terminal set K ⊆ V
■ Subset X ⊂ K
■ Vertex v ∈ V

Cost of a Steiner tree
connecting X U {v}
■ gv(X), if deg(v) ≥ 2
■ fv(X), otherwise

■ Networks, 1972
■ Dynamic-programing algorithm
■ Fixed parameter tractable
■ Optimal-decomposition property
■ Exponential space complexity
■ Time complexity, O(3k n + 2k n2 + n (n log n + m))

Optimal-decomposition property

8

Erickson–Monma–Veinott Algorithm

9

■ Mathematics of Operations Research, 1987
■ Improvement of Dreyfus–Wagner algorithm
■ Three improvements

■ Split set X only when v ∈ V \ X
■ Restrict computations to subset with terminals
■ Compute shortest path on demand

■ Edge-linear time algorithm
■ Time complexity, O(3k n + 2k (n log n + m))
■ Exponential space complexity, O(2k n + n + m)

Solving the group Steiner problem

Reducing the group Steiner problem
to the Steiner problem.

■ A network N = (V, E, w)

■ C = W(N)

■ Voß, Balkan conference on
Operational Research, 1990.

■ Restated by Duin et al. in 2004.

■ Most algorithms of the Steiner
problem can be used to solve
the group Steiner problem.

10

Implementation challenges

11

Objective: Scaling for graphs with large number of edges

Memory consumption
■ Space complexity O(2k n + n + m)
■ Natural-bit representation for subsets

Graph traversal and memory interface
■ Arbitrary memory access pattern
■ Less cache locality for large graphs
■ Array of arrays representation for graphs

Parallel execution
■ Single core cannot saturate the memory bandwidth
■ Parallelisation over subsets of the terminal set K
■ 2k executions of Dijkstra subroutine

■ n = number of vertices
■ m = number of edges
■ k = number of terminals

Implementation of Erickson–Monma–Veinott Algorithm

12

■ 2k executions of Dijkstra
subroutine

■ Parallelisation over subsets
■ Bit-twiddling hacks for subset

generation
■ Same memory used for gv(X)

and fv(X)
■ One-dimensional array of size 2kn

Experiments

13

We measure the runtime, memory bandwidth and
peak-memory usage of the experiments.

Dijkstra’s algorithm
■ Edge-linear scaling
■ Binary versus Fibonacci heaps

Erickson, Monma and Veinott algorithm
■ Edge-linear scaling (fixed k)
■ Parallelisation speedup
■ Scaling up to a billion edges
■ Exponential scaling of number of terminals (fixed m)

● Regular graphs
● n = number of vertices
● m = number of edges
● k = number of terminals
● d = degree

Hardware

14

Mid-memory configuration
■ 2 x 2.5 GHz Intel Xeon E5-2680v3 CPU (Haswell microarchitecture,

24 cores, 12 cores/CPU, no hyper-threading, 30 MiB L3 cache)
■ 128 GiB of main memory (8 x 16 GiB DDR4-2133, ECC enabled)

Large-memory configuration
■ 2 x 2.5 GHz Intel Xeon E5-2680v3 CPU (Haswell microarchitecture,

24 cores, 12 cores/CPU, no hyper-threading, 30 MiB L3 cache)
■ 256 GiB of main memory (16 x 16 GiB DDR4-2133, ECC enabled)

Huge-memory configuration
■ 4 x 2.8 GHz Intel Xeon E7-8891v3 CPU (Haswell microarchitecture,

40 cores, 10 cores/CPU, no hyper-threading, 45 MiB L3 cache)
■ 1536 GiB of main memory (96 x 16 GiB DDR4-2133, ECC enabled)

Edge scaling of Dijkstra’s algorithm

15

■ Five random
(d-regular) graphs for
each value of m

■ d = 20 (fixed)
■ Logarithmic axis
■ Mid-memory

configuration

Binary heaps versus Fibonacci heaps

16

■ Five random (d-regular)
graphs for each value of m

■ Mid-memory configuration

■ n = 65536 (fixed)

■ d = 20, 40, 80, …, 40960

■ Logarithmic axis

Edge scaling

17

■ Five random
(d-regular) graphs for
each value of m

■ d = 20 (fixed)

■ k = 10 (fixed)

■ Logarithmic axis

■ Mid-memory
configuration

Parallelisation speed-up

18

■ Five random
(d-regular) graphs for
each value of m

■ d = 20 (fixed)

■ k = 10 (fixed)

■ Logarithmic axis

■ Speed-up is fifteen
times for m = 108

■ Mid-memory
configuration

Memory bandwidth

19

■ Five random
(d-regular) graphs for
each value of m

■ d = 20 (fixed)

■ k = 10 (fixed)

■ Logarithmic x-axis

■ Bandwidth speed-up
is fifteen times for
m = 108

■ Mid-memory
configuration

Scaling up to a billion edges

20

■ Five random
(d-regular) graphs for
each value of m

■ d = 20 (fixed)

■ k = 10 (fixed)

■ Logarithmic axis

■ Huge-memory
configuration

Optimal cost versus optimal solution

21

■ Five random
(d-regular) graphs for
each value of m

■ d = 20 (fixed)

■ k = 10 (fixed)

■ Logarithmic axis

■ Binary heap

■ Large-memory
configuration

Summary

22

Scaling on a single compute node
■ Up to a billion edges for small number of terminals
■ Up to twenty terminals for small number of edges

Parallel implementation
■ Fifteen times faster than its serial counterpart for large graphs
■ Memory bandwidth is twice the read random cache lines experiment

Heap implementations
■ Binary heap perform better than Fibonacci heap
■ Fibonacci heap can compete for dense graphs

Future work
■ Performance is limited by memory bandwidth
■ Using GPUs to achieve better memory bandwidth

Questions ?

23

Thank you :)

24

