
Engineering Motif Search
for Large Motifs

Petteri Kaski1 Juho Lauri2 Suhas Thejaswi1

1Department of Computer Science 2Nokia Bell Labs
Aalto University, Espoo, Finland Dublin, Ireland

Symposium of Experimental Algorithms (SEA 2018)
L’Aquila, Italy, Friday 29 June 2018

1 / 32

Motivation

• Modern computers are
extremely powerful
— NVIDIA DGX-1 has 40960 cores
— ∼6 terabytes/sec memory bandwidth

1 bit = 1 cm2, 6 terabytes = 4800 km2

• Rome metropolitan city area
is 5, 352km2

Can we use these massively parallel
microarchitectures to its fullest potential?

Empirical memory bandwidth
2 / 32

Outline

• Background on motif search

• Engineering a practical implementation of
constrained multilinear sieving for massively
vector-parallel microarchitectures
(shared-memory multi-GPU systems)

• Experiments

What we want?
• vector parallelization
• saturate memory bandwidth
• offload to multiple GPUs

3 / 32

Motif search problem

Data
Vertex-colored graph H
(the host graph)

Query
Multiset M of colors
(the motif)

Query matches a connected subgraph?
4 / 32

Data, query, and one match

Data and query Match

5 / 32

Complexity

• NP-complete if M has
at least two colors

• Fixed-parameter
tractable (FPT)

• Solvable in linear time
in the size of H
(exponential in the size of M)

Shown to be FPT by Fellows, Fertin, Hermelin, Vialette, ICALP 2007
6 / 32

FPT race
Authors Time complexity Conference

Fellows et al. O(∼ 87kpoly(n,m)) ICALP 2007
Betzler et al. O(4.32kpoly(n,m)) CPM 2008
Guillemot & Sikora O(4kpoly(n,m)) MFCS 2010
Koutis O(2.54kpoly(n,m)) IPL 2012
Björklund et al. O(2kk2m) STACS 2013

n – number of vertices

m – number of edges

k – motif size

7 / 32

Algorithm

8 / 32

Constrained multilinear sieving

Converting a combinatorial problem
to an algebraic problem (detecting a
multilinear monomial in a multivariate
polynomial)

• Björklund, Kaski and Kowalik
STACS-2013/Algorithmica-2016

• Randomized decision algorithm
(YES/NO)

• YES, always correct
no false positives

• NO, false-negative probability
k · 2−b+1

Arithmetic over GF (2b)
9 / 32

High-level algorithm (Björklund, Kaski, Kowalik)

Output YES if and only if the sum of 2k evaluations of a
multivariate polynomial P(x , y) is non-zero

• 2k evaluations: 2k points (x (1), y (1)), (x (2), y (2)), · · · , (x (2k), y (2k))
depend on motif M and random bits

• Multivariate polynomial: defined by host graph H, has
n + 2(k − 1)m variables and degree 2k − 1

• Evaluation algorithm runtime O(k2mM(b))

• Overall runtime O(2kk2mM(b))

In practice it works for small k and large m

M(b) complexity to multiply in GF (2b)
10 / 32

CPU implementation (ALENEX 2015)

Large graphs — how about large motifs?

Open source — https://github.com/pkaski/motif-search
Exponential complexity in motif size

11 / 32

Design considerations

Positives
• High arithmetic and memory bandwidth
• Massive vector-parallel microarchitecture

— roughly 40,000 cores

Negatives
• High memory latency

— bandwidth comes at the cost of latency

• Lack of hardware support for finite-field arithmetic
— PCLMULQDQinstruction set speeds up finite-field arithmetic in CPUs

12 / 32

Design considerations

Using available bandwidth
• Keeping pipeline busy

— memory access and arithmetic operations simultaneously

• Coalesced memory access
• Bit-sliced finite-field arithmetic

transition here

13 / 32

Vertex localized sieve
Base case, for all i ∈ [n] and L ⊆ [k]

Pi ,1(ζ
L, α) = ζLi

For each s = 2, 3, . . . , k , i ∈ [n], and L ⊆ [k]

Pi ,s(ζ
L, α) =

∑
j∈ΓH(i)

αs,(i ,j)

∑
s1+s2=s
s1,s2≥1

Pi ,s1(ζ
L, α)Pj ,s2(ζ

L, α)

Finally, sum at each vertex

Qi ,k(µ, ν, α) =
∑
L⊆[k]

Pi ,k(ζ
L, α)

Parallelization over vertices i ∈ [n] (n threads) and L ⊆ [k] (2k threads)
Parallelization over L vectorizes upto 2k threads

14 / 32

Inner loop in CUDA
For each s = 2, 3, . . . , k , i ∈ [n], and L ⊆ [k]

Pi ,s(ζ
L, α) =

∑
j∈ΓH(i)

αs,(i ,j)

∑
s1+s2=s
s1,s2≥1

Pi ,s1(ζ
L, α)Pj ,s2(ζ

L, α)

for(index_t s1 = 1; s1 < s; s1++) {
index_t s2 = s-s1;
index_t s1i = LINE_IDX(n, gl, s1, i, a);
line_t p_s1i;
LINE_LOAD(p_s1i, d_s, seg, s1i); /* Load P_{i,s1} */
index_t s2j = LINE_IDX(n, gl, s2, j, a);
line_t p_s2j;
LINE_LOAD(p_s2j, d_s, seg, s2j); /* Load P_{j,s2} */
line_t p_s1i_s2j;
LINE_MUL(p_s1i_s2j, p_s1i, p_s2j); /* Line multiplication */
LINE_ADD(p_sij, p_sij, p_s1i_s2j); /* Store result */

}

15 / 32

Workloads and uniformity
Project (vertex)

Workers (threads)

CPU workload

Project (vertex)

Workers (threads)

GPU workload

D workers (threads) work on a single project (vertex)

D divides 2k , execution in each thread of CPU is mostly independent
All threads (typically 32) in a GPU warp execute same instructions

16 / 32

Workloads and uniformity

Vertices 1 2 . . . n

. . .

Threads D workers D workers . . . D workers

Workloads of shape n × D (single GPU)

Workload of shape M × n × D (M GPUs)
Each project (vertex) has different completion time 17 / 32

Memory layout and coalescence

Worker Resources

X resources S resources
A space U space

(each iteration) (total)

• Access U
A space each

iteration
• n × D workers

Memory layout shape U
A × n × D × A

Resources = scalars, space = memory (words)
Each load/store access A words of data

18 / 32

Open source

https://github.com/pkaski/motif-localized

19 / 32

Experiments

Image source: NVIDIA Corporation
20 / 32

Hardware configurations

• CPU node
2× 2.6-GHz Intel Xeon E5-2690v3 CPU
Haswell microarchitecture, 12 cores/CPU
30 MiB L3 cache, 128 GiB main memory
(8× 16 GiB DDR4-2133)

• NVIDIA DGX-1
8× 1312-GHz NVIDIA GV100 GPU
Volta microarchitecture, 5120 cores/GPU
(40960 cores), 128 GiB of on-device
memory (8× 16 GiB 4096-bit HBM2)

Image source: Intel corporation, NVIDIA corporation
21 / 32

Experiments

• Scaling as k increases (fixed m)
– observe exponential scaling

• Scaling as m increases (fixed k)
– observe linear scaling

• Topology invariance
– graph topology should not matter much

• Error rate (false-negative probability)
– repeats required to find all vertices with at least one match

22 / 32

Runtime – motif size scaling (k)

10-2

10-1

100

101

102

103

104

 10 15 20 25 30

D
ec

is
io

n
tim

e
[s

]

Motif size (k)

CPU compute node
GPU V100

Offloading to GPU pays off

GPU linetype – 32× GF (28) bit-sliced, CPU linetype – 64× GF (28) bit-packed
Random d-regular graphs (m ∼ 104 fixed) 23 / 32

Runtime – motif size scaling (k)

10-2

10-1

100

101

102

103

104

 10 15 20 25 30

D
ec

is
io

n
tim

e
[s

]

Motif size (k)

1 x GPU V100
8 x GPU V100

Offloading to multiple GPUs pays off

32× GF (28) bit-sliced linetype, random d-regular graphs (m ∼ 104 fixed)
24 / 32

Speedup
k CPU compute node NVIDIA DGX-1 Speedup
11 0.0828 s 0.1180 s 0.70
12 0.1553 s 0.0938 s 1.66
13 0.3808 s 0.1046 s 3.64
14 0.7768 s 0.1025 s 7.58
15 1.7244 s 0.1111 s 15.52
16 3.9035 s 0.1474 s 26.48
17 8.7340 s 0.1906 s 45.82
18 19.3674 s 0.3564 s 54.34
19 42.9873 s 0.6480 s 66.34
20 94.2593 s 1.2425 s 75.86

CPU implementation is multi-threaded with vector-extensions (AVX-2)
(Björklund, Kaski, Kowalik, Lauri, ALENEX 2015)

GPU linetype – 32× GF (28) bit-sliced, CPU linetype – 64× GF (28) bit-packed
Random d-regular graphs (m ∼ 104 fixed)

25 / 32

Memory bandwidth – motif size scaling (k)

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 10 15 20 25 30

M
em

or
y

ba
nd

w
id

th
 [

G
iB

/s
]

Motif size (k)

1 x GPU V100
8 x GPU V100

More than six terabytes of memory bandwidth

32× GF (28) bit-sliced linetype, random d-regular graphs (m ∼ 104 fixed)
26 / 32

Runtime – edge linear scaling (m)

10-3

10-2

10-1

100

101

104 105 106 107

D
ec

is
io

n
tim

e
[s

]

Number of edges (m)

1 x GPU V100
8 x GPU V100

32× GF (28) bit-sliced linetype, random d-regular graphs (k = 10 fixed)
27 / 32

Topology invariance

10-4

10-3

10-2

10-1

100

101

105 106 107

D
ec

is
io

n
tim

e
[s

]

Number of edges (m)

Regular
Clique

Powlaw d– 0.5

Powlaw d– 1.0

Google
Douban

WordNet
StackOverflow

Discogs
MovieLens

Current implementation is not topology invariant

Different workloads due to varying degree of vertices. Arbitrary graph topology means
arbitrary memory accesses, 32× GF (28) bit-sliced linetype, motif size k = 10 fixed

28 / 32

False-negative probability (vertex-localization)

 0

 0.02

 0.04

 0.06

 0.08

 0.1

102 103 104 105 106 107

Fa
ls

e-
ne

ga
tiv

e
ra

te
 [

%
]

Number of edges (m)

1 x GPU V100

32× GF (28) bit-sliced linetype, k-path graph (k = 10 fixed)
Each vertex is incident to exactly one match

29 / 32

Number of repeats (vertex-localization)

 0

 1

 2

 3

 4

 5

 6

102 103 104 105 106 107

N
um

be
r

of
 r

ep
ea

ts

Number of edges (m)

k = 10

32× GF (28) bit-sliced linetype, k-path graph with motif size k = 10 fixed
Each vertex is incident to exactly one match

30 / 32

Summary

• Motif search is practical for small m, large k

• With sufficient implementation effort GPUs can
outperform CPUs in motif search
— for large k vectorization and offloading to multiple-GPUs pays off

• It is possible to saturate empirical memory bandwidth simultaneously
performing arithmetic calculations

• Bit-sliced finite-field arithmetic to overcome the lack of hardware
support
— multiple repeats can overcome high false-negative probability

of small field size

31 / 32

Summary

• Motif search is practical for small m, large k

• With sufficient implementation effort GPUs can
outperform CPUs in motif search
— for large k vectorization and offloading to multiple-GPUs pays off

• It is possible to saturate empirical memory bandwidth simultaneously
performing arithmetic calculations

• Bit-sliced finite-field arithmetic to overcome the lack of hardware
support
— multiple repeats can overcome high false-negative probability

of small field size

https://github.com/pkaski/motif-localized

Thank you
32 / 32

