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Motivation

• Modern computers are
extremely powerful
— NVIDIA DGX-1 has 40960 cores
— ∼6 terabytes/sec memory bandwidth

1 bit = 1 cm2, 6 terabytes = 4800 km2

• Rome metropolitan city area
is 5, 352km2

Can we use these massively parallel
microarchitectures to its fullest potential?

Empirical memory bandwidth
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Outline

• Background on motif search

• Engineering a practical implementation of
constrained multilinear sieving for massively
vector-parallel microarchitectures
(shared-memory multi-GPU systems)

• Experiments

What we want?
• vector parallelization
• saturate memory bandwidth
• offload to multiple GPUs
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Motif search problem

Data
Vertex-colored graph H
(the host graph)

Query
Multiset M of colors
(the motif)

Query matches a connected subgraph?
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Data, query, and one match

Data and query Match
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Complexity

• NP-complete if M has
at least two colors

• Fixed-parameter
tractable (FPT)

• Solvable in linear time
in the size of H
(exponential in the size of M)

Shown to be FPT by Fellows, Fertin, Hermelin, Vialette, ICALP 2007
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FPT race
Authors Time complexity Conference

Fellows et al. O(∼ 87kpoly(n,m)) ICALP 2007
Betzler et al. O(4.32kpoly(n,m)) CPM 2008
Guillemot & Sikora O(4kpoly(n,m)) MFCS 2010
Koutis O(2.54kpoly(n,m)) IPL 2012
Björklund et al. O(2kk2m) STACS 2013

n – number of vertices

m – number of edges

k – motif size
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Algorithm
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Constrained multilinear sieving

Converting a combinatorial problem
to an algebraic problem (detecting a
multilinear monomial in a multivariate
polynomial)

• Björklund, Kaski and Kowalik
STACS-2013/Algorithmica-2016

• Randomized decision algorithm
(YES/NO)

• YES, always correct
no false positives

• NO, false-negative probability
k · 2−b+1

Arithmetic over GF (2b)
9 / 32



High-level algorithm (Björklund, Kaski, Kowalik)

Output YES if and only if the sum of 2k evaluations of a
multivariate polynomial P(x , y) is non-zero

• 2k evaluations: 2k points (x (1), y (1)), (x (2), y (2)), · · · , (x (2k ), y (2k ))
depend on motif M and random bits

• Multivariate polynomial: defined by host graph H, has
n + 2(k − 1)m variables and degree 2k − 1

• Evaluation algorithm runtime O(k2mM(b))

• Overall runtime O(2kk2mM(b))

In practice it works for small k and large m

M(b) complexity to multiply in GF (2b)
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CPU implementation (ALENEX 2015)

Large graphs — how about large motifs?

Open source — https://github.com/pkaski/motif-search
Exponential complexity in motif size
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Design considerations

Positives
• High arithmetic and memory bandwidth
• Massive vector-parallel microarchitecture

— roughly 40,000 cores

Negatives
• High memory latency

— bandwidth comes at the cost of latency

• Lack of hardware support for finite-field arithmetic
— PCLMULQDQinstruction set speeds up finite-field arithmetic in CPUs
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Design considerations

Using available bandwidth
• Keeping pipeline busy

— memory access and arithmetic operations simultaneously

• Coalesced memory access
• Bit-sliced finite-field arithmetic

transition here
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Vertex localized sieve
Base case, for all i ∈ [n] and L ⊆ [k]

Pi ,1(ζ
L, α) = ζLi

For each s = 2, 3, . . . , k , i ∈ [n], and L ⊆ [k]

Pi ,s(ζ
L, α) =

∑
j∈ΓH(i)

αs,(i ,j)

∑
s1+s2=s
s1,s2≥1

Pi ,s1(ζ
L, α)Pj ,s2(ζ

L, α)

Finally, sum at each vertex

Qi ,k(µ, ν, α) =
∑
L⊆[k]

Pi ,k(ζ
L, α)

Parallelization over vertices i ∈ [n] (n threads) and L ⊆ [k] (2k threads)
Parallelization over L vectorizes upto 2k threads
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Inner loop in CUDA
For each s = 2, 3, . . . , k , i ∈ [n], and L ⊆ [k]

Pi ,s(ζ
L, α) =

∑
j∈ΓH(i)

αs,(i ,j)

∑
s1+s2=s
s1,s2≥1

Pi ,s1(ζ
L, α)Pj ,s2(ζ

L, α)

for(index_t s1 = 1; s1 < s; s1++) {
index_t s2 = s-s1;
index_t s1i = LINE_IDX(n, gl, s1, i, a);
line_t p_s1i;
LINE_LOAD(p_s1i, d_s, seg, s1i); /* Load P_{i,s1} */
index_t s2j = LINE_IDX(n, gl, s2, j, a);
line_t p_s2j;
LINE_LOAD(p_s2j, d_s, seg, s2j); /* Load P_{j,s2} */
line_t p_s1i_s2j;
LINE_MUL(p_s1i_s2j, p_s1i, p_s2j); /* Line multiplication */
LINE_ADD(p_sij, p_sij, p_s1i_s2j); /* Store result */

}
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Workloads and uniformity
Project (vertex)

Workers (threads)

CPU workload

Project (vertex)

Workers (threads)

GPU workload

D workers (threads) work on a single project (vertex)

D divides 2k , execution in each thread of CPU is mostly independent
All threads (typically 32) in a GPU warp execute same instructions
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Workloads and uniformity

Vertices 1 2 . . . n

. . .

Threads D workers D workers . . . D workers

Workloads of shape n × D (single GPU)

Workload of shape M × n × D (M GPUs)
Each project (vertex) has different completion time 17 / 32



Memory layout and coalescence

Worker Resources

X resources S resources
A space U space

(each iteration) (total)

• Access U
A space each

iteration
• n × D workers

Memory layout shape U
A × n × D × A

Resources = scalars, space = memory (words)
Each load/store access A words of data
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Open source

https://github.com/pkaski/motif-localized
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Experiments

Image source: NVIDIA Corporation
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Hardware configurations

• CPU node
2× 2.6-GHz Intel Xeon E5-2690v3 CPU
Haswell microarchitecture, 12 cores/CPU
30 MiB L3 cache, 128 GiB main memory
(8× 16 GiB DDR4-2133)

• NVIDIA DGX-1
8× 1312-GHz NVIDIA GV100 GPU
Volta microarchitecture, 5120 cores/GPU
(40960 cores), 128 GiB of on-device
memory (8× 16 GiB 4096-bit HBM2)

Image source: Intel corporation, NVIDIA corporation
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Experiments

• Scaling as k increases (fixed m)
– observe exponential scaling

• Scaling as m increases (fixed k)
– observe linear scaling

• Topology invariance
– graph topology should not matter much

• Error rate (false-negative probability)
– repeats required to find all vertices with at least one match
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Runtime – motif size scaling (k)
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Runtime – motif size scaling (k)
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Offloading to multiple GPUs pays off

32× GF (28) bit-sliced linetype, random d-regular graphs (m ∼ 104 fixed)
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Speedup
k CPU compute node NVIDIA DGX-1 Speedup
11 0.0828 s 0.1180 s 0.70
12 0.1553 s 0.0938 s 1.66
13 0.3808 s 0.1046 s 3.64
14 0.7768 s 0.1025 s 7.58
15 1.7244 s 0.1111 s 15.52
16 3.9035 s 0.1474 s 26.48
17 8.7340 s 0.1906 s 45.82
18 19.3674 s 0.3564 s 54.34
19 42.9873 s 0.6480 s 66.34
20 94.2593 s 1.2425 s 75.86

CPU implementation is multi-threaded with vector-extensions (AVX-2)
(Björklund, Kaski, Kowalik, Lauri, ALENEX 2015)

GPU linetype – 32× GF (28) bit-sliced, CPU linetype – 64× GF (28) bit-packed
Random d-regular graphs (m ∼ 104 fixed)
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Memory bandwidth – motif size scaling (k)
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More than six terabytes of memory bandwidth

32× GF (28) bit-sliced linetype, random d-regular graphs (m ∼ 104 fixed)
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Runtime – edge linear scaling (m)
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Topology invariance
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Current implementation is not topology invariant

Different workloads due to varying degree of vertices. Arbitrary graph topology means
arbitrary memory accesses, 32× GF (28) bit-sliced linetype, motif size k = 10 fixed
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False-negative probability (vertex-localization)
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Number of repeats (vertex-localization)
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Each vertex is incident to exactly one match
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Summary

• Motif search is practical for small m, large k

• With sufficient implementation effort GPUs can
outperform CPUs in motif search
— for large k vectorization and offloading to multiple-GPUs pays off

• It is possible to saturate empirical memory bandwidth simultaneously
performing arithmetic calculations

• Bit-sliced finite-field arithmetic to overcome the lack of hardware
support
— multiple repeats can overcome high false-negative probability

of small field size
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Summary

• Motif search is practical for small m, large k

• With sufficient implementation effort GPUs can
outperform CPUs in motif search
— for large k vectorization and offloading to multiple-GPUs pays off

• It is possible to saturate empirical memory bandwidth simultaneously
performing arithmetic calculations

• Bit-sliced finite-field arithmetic to overcome the lack of hardware
support
— multiple repeats can overcome high false-negative probability

of small field size

https://github.com/pkaski/motif-localized

Thank you
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